

SGG Zentralkurs | June 2024

'OLD' NEWS FROM SSEF ... with a focus on antique gems & jewellery

Presentation by PD Dr. Michael S. Krzemnicki

Antique Gems

In historic Eastern cultures (e.g. Mughal Empire), gems were often drilled or half-drilled to fix them with metal wires as a pendant on jewellery.

Later, some of these gems have been recut and re-used in new designs and styles.

SSEF

Re-use of antique Gems

Historic multi-gem necklace recently investigated at SSEF.

All gems are suspended (double half-drill) and mostly faceted but with strong wear marks!

Some of the faceted gems show half-drilled holes very close (and fragile) near the surface. It is assumed that these stones were reshaped and faceted at a later (but historic) age than the original drilling.

Re-use of Sri Lankan Sapphire

Relics of large drill-hole in a Sri Lankan sapphire. We assume that this stone was actually re-used and faceted from an even older jewellery (fixed through drill-holes) when set into this brooch in the 1860ies.

'Classic' Sri Lankan Pink Sapphire

Relics (drill-holes) from former setting.

Emerald-coloured Glass

What looks like a classic 19th century brooch with old cut diamonds...

Emerald-coloured Glass

...turns out to be green flint glass. The green colour is from traces of chromium.

Intriguingly, the green glass contains many eye-visible "spiky" inclusions, thus well mimicking a Colombian emerald.

Green painted Topaz to imitate Emerald

Pink painted Topaz

Pink Sapphires with orange painting at pavilion

Bracelet with pink sapphires painted orange on backside and in closed-back setting. To intensify colour and slightly shift it to 'ruby'.

white Jade ???

white Jade ???

...dense mottled intergrowth of zoisite (complex Ca-Al-silicate) and plagioclase. Thus **not** jade!

Symbol	Concentration	Error
Na2O	0.000%	0
MgO	0.000%	0
Al2O3	27.332%	0.047
SiO2	33.514%	0.083
SO2	0.019%	0.0043
Cl	0.267%	0.035
K2O	0.283%	0.01
CaO	37.192%	0.063
Sc2O3	0.209%	0.066
Ti O2	0.002%	7.2E-05
V2O3	0.000%	0
Cr2O3	0.150%	0.0018
MnO	0.022%	0.0012
Fe2O3	0.495%	0.0039

SSEF

white Jade ???

Zoisite, first discovered in 1794 at Saualpe in Austria, it was soon after named after Sigmund Zois Freiherr von Edelstein (sic!) (1747-1819), nobleman and natural scientist.

Plagioclase, solid-solution (Na to Ca-Al-silicates) wihin the feldspar group. Its name comes from ancient Greek $\pi\lambda\dot{\alpha}\gamma \omega c$ *(plágios)* 'oblique', and <u>κλάσις</u> *(klásis)* 'fracture', in reference to its two cleavage angles.

(after Wikipedia)

Three cleavage directions not at 90 degrees

Exceptional Spinel: From rough to cut

Exceptional Spinel: From rough to cut

Forsterite (Mg₂SiO₄) inclusion in spinel

Absorption spectrum, purple colour mainly due to Feabsorption.

SSEF

The Making of....

SSEF

Cobalt Spinel

Cobalt spinel of 1.0 ct with a deep but vivid cobalt blue colour as a result of very high cobalt concentration (about 2100 ppm Co).

Cobalt Spinel

Cobalt spinel often contains about 40-200 ppm of cobalt. At this level, cobalt cannot be detected with chemical EDXRF analyses.

Recently we analysed a Cospinel with very high cobalt concentration (about 2100 ppm).

Consequently, the cobalt is even visible in the EDXRF spectrum as a distinct shoulder besides the Fe-Kb peak.

Diamonds

Diamond : from Rough to Cut

SSEF GemTrack[™] for a diamond

Diamond : from Rough to Cut

Based on microscopic observations and numerous spectroscopic criteria it was possible to confirm that the faceted pear-shaped diamond of 1.06 ct is the same as the rough diamond of 4.93 ct analysed by SSEF before cutting.

Diamond Imitation

Synthetic moissanite of 1.8 ct with engraved girdle.

Characteristic doubling effect makes identification easy!

'Pearl' Pendant made of two assembled Blisters

Interestingly, this 'pearl' pendant proved to be an assembled item made of two shell blisters.

Exceptional Non-Nacreous Pearls

Corals

Exceptional coral strand with 67 coral beads (up to 26.75 mm) of perfectly matching colour and quality. Their subtle but attractive pink colour is poetically also referred to as *'angel skin colour'* (boke). Such corals are commonly attributed to *Pleurocorallium elatius*.

Sample code SSEF	Taxonomic group	
136584_8	Pleurocorallium sp. (other than P. elatius, P. konojoi and P. secundum)	
136584_25	Pleurocorallium sp. (other than P. elatius, P. konojoi and P. secundum)	
136584_40	Pleurocorallium sp. (other than P. elatius, P. konojoi and P. secundum)	

DNA testing on three randomly selected coral beads of this necklace revealed, that they belong to a scientifically so-far **undescribed** *Pleurocorallium species*.

Pink Sapphires from Mozambique

SSEF

Fancy Sapphire from Umba valley, Tanzania

Three Greenland rubies of 2.39, 3.04 and 1.22 ct. Age dating was successful on a tiny zircon inclusion on the ruby of 1.22 ct (right).

Trace element signature of the investigated Greenland rubies is different to other rubies from ultramafic rocks.

Labrador Sea

Aappaluttoq ruby deposit in W-Greenland. Map: Krebs et al. 2019; Photo: Greenland Ruby A/S.

All three Greenland rubies were heated at high temperature and with significant glassy residues in healed fissures and cavities!

We calculated an age of **2.7 billion years** for the zircon inclusion!

This is well in accordance with literature describing the rubies from Greenland as the oldest ones known on Earth (e.g. Krebs et al. 2019)

- approx. temperature ranges as by gemmological literature
- In most cases, heat treatment results in a change/shift of colour.
- The lower the heating temperature the more challenging is its detection!

'Low-Temperature' Heat Treatment of Corundum

Unheated ruby from Mozambique.

Heat treatment at low temperatures (about 700 – 1200 °C) is mostly applied to remove bluish zones and slightly shift purplish sapphires to a pink colour.

'Low-Temperature' Heat Treatment of Corundum

Detection of any heat treatment is commonly relied on a combination of 'classic' microscopy, UV reaction, and spectroscopic analyses (Infrared- and Raman spectroscopy).

Detection of 'Low-Temperature' Heat Treatment

These are so-called **dehydration reactions** which occur when heating up these hydroxides (diaspore, goethite).

Heating Experiment: Diaspore to Corundum

SSEF

| SGG Zentralkurs | June 2024 | PAGE 39

Heating Experiment: Goethite to Hematite

Sample 85933_C3 Goethite in Mozambique ruby

Phase transformation

Goethite in fissure in ruby

dotted vertical lines: main goethite peaks

Real Cases

from Sotheby's International

Diaspore detected in fluid inclusion !

Estrela de Fura 55.22 ct

Sold at Sotheby's auction in June 2023 for record \$34.8 million.

THANK YOU FOR YOUR ATTENTION

13/3

SSEF

Get the newest issue at www.ssef.ch/ssef-facette

